tesseract-decoder

# [Tesseract Decoder](https://quantumlib.github.io/tesseract-decoder) A Search-Based Decoder for Quantum Error Correction. [![Licensed under the Apache 2.0 open-source license](https://img.shields.io/badge/License-Apache%202.0-3c60b1.svg?logo=opensourceinitiative\&logoColor=white\&style=flat-square)](https://github.com/quantumlib/tesseract-decoder/blob/main/LICENSE) ![C++](https://img.shields.io/badge/C++-20-fcbc2c?style=flat-square&logo=C%2B%2B&logoColor=white) [Installation](#installation) – [Usage](#usage) – [Paper](https://arxiv.org/pdf/2503.10988) – [Help](#help) – [Citation](#citation) – [Contact](#contact)

Tesseract is a Most Likely Error decoder designed for Low Density Parity Check (LDPC) quantum error-correcting codes. It applies pruning heuristics and manifold orientation techniques during a search over the error subsets to identify the most likely error configuration consistent with the observed syndrome. Tesseract achieves significant speed improvements over traditional integer programming-based decoders while maintaining comparable accuracy at moderate physical error rates.

We tested the Tesseract decoder for:

Features

Installation

Tesseract relies on the following external libraries:

Build Instructions

Tesseract uses Bazel as its build system. To build the decoder:

bazel build src:all

Running Tests

Unit tests are executed with Bazel. Run the quick test suite using:

bazel test //src:all

By default the tests use reduced parameters and finish in under 30 seconds. To run a more exhaustive suite with additional shots and larger distances, set:

TESSERACT_LONG_TESTS=1 bazel test //src:all

Usage

The file tesseract_main.cc provides the main entry point for Tesseract Decoder. It can decode error events from Stim circuits, DEM files, and pre-existing detection event files.

Basic Usage:

./tesseract --circuit CIRCUIT_FILE.stim --sample-num-shots N --print-stats

Example with Advanced Options:

./tesseract \
        --pqlimit 1000000 \
        --at-most-two-errors-per-detector \
        --det-order-seed 232852747 \
        --circuit circuit_file.stim \
        --sample-seed 232856747 \
        --sample-num-shots 10000 \
        --threads 32 \
        --print-stats \
        --beam 23 \
        --num-det-orders 1 \
        --shot-range-begin 582 \
        --shot-range-end 583

Example Usage

Sampling Shots from a Circuit:

./tesseract --circuit surface_code.stim --sample-num-shots 1000 --out predictions.01 --out-format 01

Using a Detection Event File:

./tesseract --in events.01 --in-format 01 --dem surface_code.dem --out decoded.txt

Using a Detection Event File and Observable Flips:

./tesseract --in events.01 --in-format 01 --obs_in obs.01 --obs-in-format 01 --dem surface_code.dem --out decoded.txt

Tesseract supports reading and writing from all of Stim’s standard output formats.

Performance Optimization

Here are some tips for improving performance:

Output Formats

Help

We are committed to providing a friendly, safe, and welcoming environment for all. Please read and respect our Code of Conduct.

Citation

When publishing articles or otherwise writing about Tesseract Decoder, please cite the following:

@misc{beni2025tesseractdecoder,
    title={Tesseract: A Search-Based Decoder for Quantum Error Correction},
    author = {Aghababaie Beni, Laleh and Higgott, Oscar and Shutty, Noah},
    year={2025},
    eprint={2503.10988},
    archivePrefix={arXiv},
    primaryClass={quant-ph},
    doi = {10.48550/arXiv.2503.10988},
    url={https://arxiv.org/abs/2503.10988},
}

Contact

For any questions or concerns not addressed here, please email quantum-oss-maintainers@google.com.

Disclaimer

Tesseract Decoder is not an officially supported Google product. This project is not eligible for the Google Open Source Software Vulnerability Rewards Program.

Copyright 2025 Google LLC.

Google Quantum AI