Tesseract is a Most Likely Error decoder designed for Low Density Parity Check (LDPC) quantum error-correcting codes. It applies pruning heuristics and manifold orientation techniques during a search over the error subsets to identify the most likely error configuration consistent with the observed syndrome. Tesseract achieves significant speed improvements over traditional integer programming-based decoders while maintaining comparable accuracy at moderate physical error rates.
We tested the Tesseract decoder for:
--in
. The decoder can also process specific shot ranges for flexible experiment
setups.--beam
, --det-penalty
,
--beam-climbing
, --no-revisit-dets
, --at-most-two-errors-per-detector
, and --pqlimit
to
improve performance while maintaining a low logical error rate. To learn more about these
options, use ./bazel-bin/src/tesseract --help
Tesseract relies on the following external libraries:
Tesseract uses Bazel as its build system. To build the decoder:
bazel build src:all
Unit tests are executed with Bazel. Run the quick test suite using:
bazel test //src:all
By default the tests use reduced parameters and finish in under 30 seconds. To run a more exhaustive suite with additional shots and larger distances, set:
TESSERACT_LONG_TESTS=1 bazel test //src:all
The file tesseract_main.cc
provides the main entry point for Tesseract Decoder. It can decode
error events from Stim circuits, DEM files, and pre-existing detection event files.
Basic Usage:
./tesseract --circuit CIRCUIT_FILE.stim --sample-num-shots N --print-stats
To decode pre-generated detection events, provide the input file using
--in SHOTS_FILE --in-format FORMAT
.
Example with Advanced Options:
./tesseract \
--pqlimit 1000000 \
--at-most-two-errors-per-detector \
--det-order-seed 232852747 \
--circuit circuit_file.stim \
--sample-seed 232856747 \
--sample-num-shots 10000 \
--threads 32 \
--print-stats \
--beam 23 \
--num-det-orders 1 \
--shot-range-begin 582 \
--shot-range-end 583
Sampling Shots from a Circuit:
./tesseract --circuit surface_code.stim --sample-num-shots 1000 --out predictions.01 --out-format 01
Using a Detection Event File:
./tesseract --in events.01 --in-format 01 --dem surface_code.dem --out decoded.txt
Using a Detection Event File and Observable Flips:
./tesseract --in events.01 --in-format 01 --obs_in obs.01 --obs-in-format 01 --dem surface_code.dem --out decoded.txt
Tesseract supports reading and writing from all of Stim’s standard output formats.
Here are some tips for improving performance:
--threads
to leverage multicore processors for faster
decoding.--beam
to control the trade-off between accuracy and speed. Smaller beam sizes
result in faster decoding but potentially lower accuracy.--beam-climbing
for enhanced cost-based decoding.--at-most-two-errors-per-detector
to improve
performance.--pqlimit
to limit the size of the priority queue.--dem-out
is specified, outputs estimated error frequencies.Full Python wrapper documentation
This repository contains the C++ implementation of the Tesseract quantum error correction decoder, along with a Python wrapper. The Python wrapper/interface exposes the decoding algorithms and helper utilities, allowing Python users to leverage this high-performance decoding algorithm.
The following example demonstrates how to create and use the Tesseract decoder using the Python interface.
from tesseract_decoder import tesseract
import stim
import numpy as np
# 1. Define a detector error model (DEM)
dem = stim.DetectorErrorModel("""
error(0.1) D0 D1 L0
error(0.2) D1 D2 L1
detector(0, 0, 0) D0
detector(1, 0, 0) D1
detector(2, 0, 0) D2
""")
# 2. Create the decoder configuration
config = tesseract.TesseractConfig(dem=dem, det_beam=50)
# 3. Create a decoder instance
decoder = config.compile_decoder()
# 4. Simulate detector outcomes
syndrome = np.array([0, 1, 1], dtype=bool)
# 5a. Decode to observables
flipped_observables = decoder.decode(syndrome)
print(f"Flipped observables: {flipped_observables}")
# 5b. Alternatively, decode to errors
decoder.decode_to_errors(syndrome)
predicted_errors = decoder.predicted_errors_buffer
# Indices of predicted errors
print(f"Predicted errors indices: {predicted_errors}")
# Print properties of predicted errors
for i in predicted_errors:
print(f" {i}: {decoder.errors[i]}")
The Tesseract paper recommends two setup for starting your exploration with tesseract:
(1) Long-beam setup:
tesseract_config = tesseract.TesseractConfig(
dem=dem,
pqlimit=1_000_000,
det_beam=20,
beam_climbing=True,
num_det_orders=21,
det_order=tesseract_decoder.utils.DetOrder.DetIndex,
no_revisit_dets=True,
)
(2) Short-beam setup:
tesseract_config = tesseract.TesseractConfig(
dem=dem,
pqlimit=200_000,
det_beam=15,
beam_climbing=True,
num_det_orders=16,
det_order=tesseract_decoder.utils.DetOrder.DetIndex,
no_revisit_dets=True,
)
For det_order
, you can use two other options of DetIndex
and DetCoordinate
as well.
These values balance decoding speed and accuracy across the benchmarks reported in the paper and can be adjusted for specific use cases.
We are committed to providing a friendly, safe, and welcoming environment for all. Please read and respect our Code of Conduct.
When publishing articles or otherwise writing about Tesseract Decoder, please cite the following:
@misc{beni2025tesseractdecoder,
title={Tesseract: A Search-Based Decoder for Quantum Error Correction},
author = {Aghababaie Beni, Laleh and Higgott, Oscar and Shutty, Noah},
year={2025},
eprint={2503.10988},
archivePrefix={arXiv},
primaryClass={quant-ph},
doi = {10.48550/arXiv.2503.10988},
url={https://arxiv.org/abs/2503.10988},
}
For any questions or concerns not addressed here, please email tesseract-decoder-dev@google.com.
Tesseract Decoder is not an officially supported Google product. This project is not eligible for the Google Open Source Software Vulnerability Rewards Program.
Copyright 2025 Google LLC.